
Saul Greenberg
Greenberg Consulting Inc. / University of Calgary
saul@ucalgary.ca

Part 5 of the Timelapse Manual Series. Last updated December 23, 2023, Timelapse Version 2.3.0.9

Timelapse Database Guide
A guide to the internal structure of Timelapse Database tables

- 2 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

Timelapse Database Guide
A guide to the internal structure of the Timelapse database
tables1

This guide explains the internal structure of the various
database tables found in the SQLite database files created by
Timelapse.

This guide is only of interest if you want to access the data
directly from the database rather than from an exported .csv
file, and that you have the knowledge to do so. For example,
the R statistical package has libraries that can be used to easily
query SQLite databases, as explained in the final section of this
guide.

Table of Contents
Introduction 3

Why SQLite? 3

The DataTable 4

The TemplateTable 5

The TemplateInfo Table 6

The ImageSetTable 6

The MarkersTable 6

Tables for Image Recognition 7

• DetectionCategories 7
• Detections 7
• ClassificationCategories 8
• Classifications 8
• Info 8

Accessing the Database with R 9

• Installing R and loading RSQLite 9
• Using R and RSQLite 9

 ©Saul Greenberg, 2022.

1What you see when you run Timelapse or other software to examine
the database may not exactly match the screen images in this guide, due
to software updates made after these screen images were taken. These
differences should not affect your general understanding.

- 3 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

Introduction
Timelapse saves your data and other information in SQLite database files. If you
want to access the database directly (rather than the exported spreadsheet), read
on. Otherwise you can ignore this guide.

This guide explains the tables found in the two database files. Of those tables,
the most important is the DataTable in the Timelapse database .ddb file, as it will
contain all your tagging data. Other tables, while described here, are likely of little
or no interest, although they are valuable for debugging. They are included only for
completeness.

Timelapse relies on two database files.
• The Timelapse database (.ddb suffix) contains all your tag data, image

recognition data (if any), as well as other data used internally by Timelapse. It
is created when Timelapse loads a template for the first time. By default, that
file is called TimelapseData.ddb, but it can be renamed to anything as long as it
maintains the .ddb suffix. (The ddb suffix stands for data database file).

• The Timelapse Template database (.tdb suffix) contains the data defining the
template. It is created using the Timelapse Template Editor, and is read in by
Timelapse. By default, that file is called TimelapseTemplate.tdb, but it can be
renamed to anything as long as it maintains the .tdb suffix. (The tdb suffix stands
for template database file).

Most people export and process their data via a CSV file. However, you can directly
access the Timelapse database files (and the data within it) using software of your
choice. For example:
• The R statistical package is often used by knowledgeable people to access SQLite

data bases to perform statistical analysis of that data.
• Popular programming languages often include extensions or libraries that can

access SQLite databases. If you are code-savvy, this gives you flexibility to do
whatever you want.

• SQLite database viewers. There are myriads of free tools available that will let
you view SQLite database files, query them, and even edit their structure and
contents. These are handy for inspecting and modifying the database table
structure and the values contained within them. Examples include:
 » DB Browser http://sqlitebrowser.org/
 » SQLite Administrator http://sqliteadmin.orbmu2k.de/

Be aware that altering the database files can compromise Timelapse’s ability to
read those files if it deviates from Timelapse expectations. Problematic alterations
cover changing table schema, adding or deleting columns, and changing data to
unexpected formats. Make sure to back up your database files before you do any
modifications.

Why SQLite?
SQLite is a small, fast, self-contained, high-reliability, full-featured, SQL database
engine. Its web site says it is the most used database engine in the world, where it is
built into all mobile phones, comes bundled inside countless other applications that
people use every day, and is often the engine behind many web sites. Of particular
value is that SQLite can be embedded into other software.

Timelapse includes the SQLite database engine, where everything is self-contained
in the Timelapse software folder. This means that when you download Timelapse,
you are also downloading SQLite onto your machine.

Positives
• As SQLite is installed as part of Timelapse on your local machine, you can run

Timelapse (and the database) without an Internet connection. This is particularly
valuable when working in the field.

• Everything is portable. You can move Timelapse software (and your images) from
machine to machine, and it should all work. No extra configuration is needed

• Unlike most other databases, you don't need a systems person to install or
configure SQLite.

• In most cases, the software will run fine even on locked down machines.
• SQLite architecture is a good fit for the data requirements of most tagging needs.
Negatives
• In practice, the SQLite database is reasonably fast when storing and accessing

data for up to approximately a million or so images. It does slow down somewhat
above that, but is still workable. For extremely large image sets, you may want to
divide your work into smaller chunks, each defining its own TImelapse database.
You can always merge these databases afterwards using the Timelapse File |
Merge databases... facility.

• The Timelapse / SQLite architecture is not configured to run as a central server,
e.g., as a database accessed through the cloud. However, there are options to
make this work, including:
 » locating your database files and images on network server,
 » running virtual machines, where users log onto them to do their work.

• Even when located on a central system, SQLite is less suited for multiple people
simultaneously tagging overlapping sets of images. Essentially, SQLite is not as
robust as industrial database engines at handling conflicts that can occur when
people simultaneously write to the database. It can still work, but you have to be
somewhat more disciplined. A better strategy is to create independent subsets
of images and database files, and assign those to different people to minimize
overlap. See the Timelapse Reference Guide for suggestions.

http://sqlitebrowser.org/
http://sqliteadmin.orbmu2k.de/
https://www.sqlite.org/index.html

- 4 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

The DataTable
The DataTable, found in the Timelapse .ddb file, contains all the data entered by
the analyzer. This likely makes this table the most important, and perhaps the only,
database table of interest to a Timelapse user who wishes to directly access data.

The figure below illustrates an example DataTable as held by the database. Each row
is a record, uniquely identified by an integer Id. The Id is set by the database engine,
where its value is incremented and assigned when images are loaded into Timelapse
for the very first time. If the analyst deleted an image and its data, that row would
no longer appear (i.e., the Id column would appear to skip a number).

Remaining columns correspond to the DataLabels specified in the Timelapse
Template file. Columns corresponding to the required data fields listed in the
Timelapse Template Editor are always present, even if they have their visibility set to
invisible: File, RelativePath, DateTime and DeleteFlag. All other columns are custom
fields defined by the project manager when using the Timelapse Template Editor.

The example Data Table below illustrates its structure and contents after a user
completed the exercises in the Timelapse QuickStart Guide. The columns reflect the
contents of the template provided in the PracticeImageSet.

The DataTable's schema is shown at the right. Even though most schema types are
TEXT, Timelapse expects certain column data to be limited to specific values.

• Id values, set by the database engine, are positive integers.
• File and RelativePath values are combined to locate the file. File should be the

file name of the image or video. RelativePath values should be the path from the
root folder (which contains the template to the image). Looking at the first row
of the example data table, the image file IMG_001.jpg is located relative to a root
folder in the subfolder Station1\Fetched-2015-06. Files located directly in the
root folder would have and empty RelativePath.

• DateTime values can only contain a date formated as yyyy-mm-dd hh:mm:ss (for
example, 2015-05-27 18:01:53)

• Flag controls can only contain case-insensitive true or false values (e.g., the
columns Dark, Empty, Publicity, and DeleteFlag).

• Choice control values should match a Choice menu item as defined in the
template (e.g., the Species column data must match bear, deer, etc.).

• Count control values are blank, 0 or a positive integer. (e.g., the Count column)
• Text control columns can contain any text (e.g., Analyst can contain any name).

- 5 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

The TemplateTable
The TemplateTable is found in both the Timelapse Template .tdb and the Timelapse
.ddb file.

• The TemplateTable in the .tdb file is created or modified through the Timelapse
Template Editor.

• When an image set is loaded into Timelapse for the first time, Timelapse creates
its own copy of that template in the .ddb file. It then uses the TemplateTable as
a specification for the data fields present in the user interface, and to define the
DataTable schema.

• During subsequent loads of that image set, Timelapse compares the .tdb
TemplateTable with the .ddb copy for differences, and tries to resolve those
differences by displaying a dialog to the user.

While you will not normally access this table, it can be of interest if you want to
retrieve (or modify) the information associated with each data field.

The example TemplateTable below illustrates the structure and contents of the
template used in the Timelapse QuickStart guide, which in turn was included in the
PracticeImageSet.

• ControlOrder specifies the order of controls in the Timelapse user interface.
• SpreadSheetOrder column specifies the order of columns when data is exported

to a .CSV file, which in turn specifies how those columns appear when displayed
in a spreadsheet.

• Other fields are as described in the Timelapse Template Guide.
• Of particular note is the List column, a JSON structure that specifies the contents

of the Choice menu item. The structure contains a IncludeEmptyChoice boolean
field indicating whether an empty item should be included in the menu, and
ChoiceListNonEmpty list field containing text describing its menu items.

- 6 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

The TemplateInfo Table
The TemplateInfo Table is found in only the Timelapse Template .tdb file. It contains a single row with a single field called VersionCompatability, which records the last version of
Timelapse used to open this template.

The ImageSetTable
The ImageSetTable is found in the Timelapse .ddb file. It stores internal information as used by Timelapse, primarily to store a few settings about using a particular image set,
that in turn are used to restore state between sessions. This table are likely of little to no interest to you.

• Log : contents of the notes added through the Timelapse Edit | Edit Notes for this Image Set menu item.
• Row: Indicates the Id of a row in the DataTable corresponding to the last image the user was viewing.
• VersionCompatability: The last version of Timelapse used to open this database.
• SortTerms: The last used criteria used to sort the images (via the Sort menu), stored as a JSON structure.
• QuickPasteXML: used internally by Timelapse to save/restore QuickPaste information, stored in XML format.
• Root folder: the name of the root folder containing the template.
• SearchTerms: the last used criteria used to select images (via the Select menu), stored as a JSON structure.
• BBDisplayThreshold: The confidence threshold for displaying bounding boxes when image recognition is used.

The MarkersTable
The MarkersTable is found in the Timelapse .ddb file. When Timelapse users use the Count visual marker capability, the positions of those markers are recorded within a JSON
list structure as x,y ratios coordinate pairs that locate the marker relative to the image size. For example, a marker's position of 0.5, 0.5 would be in the center of the image.
The Id is the Id of the record that has a marker associated with it, while the column names reflect the name of the Count's data label. A column exists for each Count data type
included in the template. For example, if another template defined two counters with the data labels 'Counter1' and 'Counter2', we would see two columns with those names.

- 7 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

Tables for Image Recognition
If image recognition is enabled and you have imported recognition data,
Timelapse will create several additional tables to hold the recognition data,
which in turn is used to select and display recognition data to the analyst.
If you have not read in recognition data, these tables will be absent.

For the most part, the data in those tables mirrors what was read in
from the JSON recognition file, albeit in a different format and with a few
exceptions as indicated below. For specific information, you should review
the Microsoft Metadetector specification for JSON files.

Although you could use these tables to access the recognition data, that
data will likely be best exploited within the Timelapse software. Thus the
various image recognition tables are likely of little interest to you.

DetectionCategories
The image recognition file contains an entry called detection_categories,
which broadly identifies what the recognizer thinks it has detected and
assigns a unique integer to each category. Timelapse reads those values
into the table (as illustrated below). Timelapse also adds a new category
called ‘Empty’, which will be used to identify any images analyzed by the
detector but which produced no detections. It is mostly used as a lookup
table to correlate the category number with the human-readable label.

Detections
The image recognizer contains, for each image, a list of zero or more
possible detections.

The Detections table holds each detection as a row. The detectionID
column is the primary key. Id is the ID of the image in the DataTable, and is
used to link each detection to a single image i.e., it is a foreign key enabling
a many to one relation between the Detections and the DataTable tables.
Each detection identifies the detection category category used to look up
the label in the DetectionsCategory table, a confidence value conf for that
detection, a bounding box bbox of 4 coordinates identifying where in the
image that detection is located (in relative terms).

For example, in the table below:

• detectionID 1 identifies a detection on image 1406 in the DataTable. As
its category is 0 (Empty, as looked up on the DetectionsCategory table),
it means that although that image was analyzed, no detections were
identified for it. This is also why there are no bounding box coordinates.

• detectionID 5 identifies a detection on image 1409 in the DataTable.
Its category is 1 (animal, as looked up on the DetectionsCategory
table) with a confidence of 0.657. The coordinates are the bounding
box around the animal. Each detection shows the confidence of that
detection, and the coordinates of its bounding box.

• detectionID 6,7,8 identifies 3 other detections on image 1409,for a
total of 4 detections (and boundingboxes) on that image. This reflects
the many to one relationship.

https://github.com/microsoft/CameraTraps/tree/master/api/batch_processing#batch-processing-api-output-format

- 8 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

ClassificationCategories
The image recognition file contains an entry called classification_categories, which
produces zero or more possible classifications of what each detection could be. For
example, while a detection may broadly identify something as an animal, a classi-
fication may further identify that as a deer with high confidence, an elk with lower
confidence, and so on. The classification_categories list all possible entities that
the recognizer will consider. Each classification_category comprises an identifying
integer and label.

Timelapse reads those values into the table (as illustrated below). As with
detection_categories, Timelapse adds an ‘Empty’ classification to identify images
that do not contain any classifications. It is mostly used as a lookup table to correlate
the classification number with the human-readable label.

Classifications
The image recognizer contains, for each detection in each image, a list of zero or
more possible classifications. Each classification identifies the classification category,
and a confidence value for that classification.

The Classifications table holds each classification as a row. The classifciationID
column is the primary key. The detectionID is the ID of the detection in the
Detections table, and is used to link each classification to a single detection i.e.,
it is a foreign key describing a many to one relation between Classifications and
Detections. For example, in the table below:

• classificationID 1-2 identifies 2 different possible classifications on detection 14
in the DetectionTable. In descending order of confidence (conf) these are 1 – elk
and 4 – deer.

Info
The Megadetector image recognition file includes extra information that Timelapse records in its Info table. This includes Megadetector version information, time taken to do
the recognitions, and several values indicating suggested confidence value thresholds when using detections and classifications.

- 9 of 9 -Timelapse Database Guide Timelapse Manual Series: Part 5

Accessing the Database with R
R is a popular programming language used for statistical computing. R can
import data from many sources, such as CSV files and SQLite databases.
Many users rely on CSV files containing data exported by Timelapse, as
it is simple. However, users familiar with the SQL query language can
access the data directly from the database, where they can form more
complex queries to retrieve subsets of data. The data held in the Timelapse
datatable can also be updated via these queries, although one has to be
careful to conform to the data formats expected by Timelapse.

This brief tutorial describes how to open a Timelapse .ddb database file
with R, and retrieve data from a particular table using SQL statements. We
do not show how to analyze that data, as that would be something specific
to the analyst's needs and can be done via routine R programming. Various
other tutorials are available online that provide examples of how to use
SQLite within R to query and manipulate a database.

Installing R and loading RSQLite
If not already on your system, the R programming environment needs to
be installed and its RSQLite package loaded. This is very easy to do, and
only needs to be done once.

Install R on windows
Various sites include the R download for Windows, such as
https://cran.r-project.org/bin/windows/base/

Follow the instructions on that page for downloading and installing R. It
should take just a few moments.

Running R
R should now be available as a new application, for example, under your
Start menu. Run it as you would any other application. A window should
appear, which includes a menu and an R Console window.

Installing and loading RSQLite
RSQLite needs to be installed on your machine, which is a one-time
operation. From the R menu at the top of the window, select Packages |
Install Package(s). You will be asked for a preferable site to download it
from (choose something from your counter). It wil lthen ask you which
package you want to install. Select RSQLite from the scrollable list.

You then need to load the RSQLite package into R. From the R menu, select
Packages | Load Package(s), and select RSQLite from the scrollable list.

Using R and RSQLite
Connect to the Timelapse database
Lets assume a database file called TimelapseData.ddb is available that
contains tag data. To access this database, we have to connect to it. This is
done through the following command, where the full path to the database
file is supplied. The connection is assigned to the variable conn, whichis
then used to access that database.
Note: '\' is a special character, written as '\\'

conn <- dbConnect(RSQLite::SQLite(),
 "C:\\Users\\saulg\\Desktop\\PracticeImageSet\\TimelapseData.ddb")

Query the Timelapse database
SQL queries can now be easily generated and the results collected. In this
example, we collect the file names of images in the Station1\Fetched-
2015-09 folder that contain bobcat in the Species field.

Collect the query result in the variable bobcatFiles
bobcatFiles <- dbGetQuery(conn,
 "SELECT RelativePath, File FROM DataTable
 WHERE RelativePath= ' Station1\\Fetched-2015-09'
 AND Species = 'bobcat'")

List the contents of bobcatFiles
> bobcatFiles
 RelativePath File
1 Station1\\Fetched-2015-09 IMG_031.jpg
2 Station1\\Fetched-2015-09 IMG_032.jpg
3 Station1\\Fetched-2015-09 IMG_033.jpg

https://cran.r-project.org/bin/windows/base/

	Accessing the Database with R
	Installing R and loading RSQLite
	Using R and RSQLite

	Tables for Image Recognition
	DetectionCategories
	Detections
	ClassificationCategories
	Classifications
	Info

	The MarkersTable
	The ImageSetTable
	The TemplateTable
	The DataTable
	Why SQLite?
	Introduction
	The TemplateInfo Table

